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agreement with the results of Sanderson rl17. The apparent comments. 
dkcrease in gaseous conduction contribuGo<to con& heat 
transfer as the contact pressure is increased is an anomaly 
which has also been noted by Ross and Stoute [12] in 
some of whose tests the fluid conductance was even 
negative ! These results emphasize the difficulties in obtaining 
accurate information from tests of this kind for reasons 
mentioned earlier. Also, at high contact pressures both the 
sotid spot conductance and the total wnductance are large 
and the relatively small fluid conductance is determined as a 
difference between two large quantities. This is likely to be 
inaccurate. 

Figure 5 shows the variation in fluid (air) conductance 
with fluid pressure for the stainless steeI/Nilo combination 
at four different contact pressures. However, over the small 
contact pressure range considered (0.755-2.89 MPa), the 
variation in fluid conductance is small at any given Ruid 
pressure-a fact confirmed by Fig. 2. The results show that 
the decrease in fluid ~o~duct~ce as the gas pressure is 
reduced is particularly significant at gas pressures below 
100 torr, i.e. when the mean free path for air is greater than 
about ten times the mean physical gap. Boeschoten and Van 
der Held [ 131 observed similar trends. 

CONCLUSIONS 

(i) The contact conductance improves in the presence of a 
Eo~ducting medium. For all fluids such improvem~t is 
significant at low contact pressures; the solid spot conduc- 
tance predominates at high pressures. When the interface 
medium is a good conductor such as helium, the improve- 
ment is significant over the entire contact pressure range 
of the tests. 

(ii) The results for contacts formed by flat surfaces show 
agreement with those of previous workers. 

(iii) The fluid conduction contribution to heat transfer 
across a joint at any contact pressure decreases as the fluid 
pressure is reduced. Such reduction seems to be significant 
at absolute pressures below 100 torr. 
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NOTE ON A PAPER BY KIERKUS 
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(Receioed 28 March 1974 and in revised form 25 September 1974) 

NOMENCLATURE 

acceleration due to gravity; 
Grashof number gfltiv-2(T,- T,)cos#I; 
reference length; 
pressure; 
temperature; 
wall temperature; 
temperature of ambient fluid; 
Cartesian co-ordinates. 

Greek symbols 

!; 
coefficient of expansion; 
dimensio&ss temperature (T - T-J/( T, - T,); 

K, the& conductivity; 
v, kinematic viscosity; 
8% density; 

Prandtl number V/K; 
angle of plate to vertical; 
stream function. 

INTRODUCTION 

IN THZS note we re-consider, briefly, the prob~~rn of the Aow 
induced when a semi-infinite flat plate, heated to a uniform 
temperature in excess of the ambient temperature, is inclined 
at an angle Cp to the vertical. The Grashof number Gr. defined 
below, is assumed to be large. The problem has previously 
attracted the attention of Kierkus [l]. The main feature of 
the flow when compared with the case 4 = 0 is the 
asymmetry, above and below the plate, due to the normal 
component of the gravitational field g. The method of 
solution is to expand the flow quantities in powers of Gr-*. 
The structure of the primary boundary Sayer is identical with 
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that for the symmetric case # = 0. There is a hydrostatic 
balance of pressure across the boundary layer which, since 
heat is continuously absorbed by the fluid as it moves 
along the plate, results in pressure variations parallel to the 
plate. Thus for the second-order boundary-layer solution 
there is a pressure gradient which is favourable above the 
plate, but adverse below. The leading term of the solution 
outside the boundary layer given in [l] is incompatible 
with the primary boundary layer. This we correct by 
reference to the recent work of Clarke [2], and in addition 
calculate one further term in the solution outside the 
boundary Iayer. This shows that although the anticipated 
asymmetry is manifest in the second-order boundary-layer 
solution, the flow described by the two-term outer solution 
is symmetric to an observer who takes the plate as reference 
line. We note finally that the solution is formally valid when 
((n/2)-4) = O(1) in the limit Gr + ic. Jones [3] has shown 
that for an almost horizontal flat plate the self induced 
pressure gradient is formally comparable with the buoyancy 
effects. 

ANALYSIS 

We assume that our fluid is a Boussinesq fluid. We 
take L as reference length, [g/X,( T,- T,) cos (b]* and 
pg/?I,(T,- T,) cos d, as reference velocity and pressure 
respectively, where p is the density T,, T, the wall and 
ambient temperatures and 4 the angle of inclination 
of the plate y = 0, x > 0 to the vertical so that 
g = -g(cos&+sin&. Then with (T-T,) = (T,-T,)B, 
and $ representing the dimensionless stream function, the 
Navier-Stokes equations may be written as 

= -$+B+Gr-+V’$), 1 
a$ ay a* a$b 

-Saxt+------ Y ax a~ ay 

a+a6 aeae 
----II 

ay ax ax ay 
=(r -‘Gr-+V=O. 

In equations (1) CT is the Prandtl number and 
GT = g&%~‘z(T,- T,)cosQ the Grashof number, assumed 
large. The boundary conditions are 

i=$=o, e=i; p=o, x>o; 1 (2) 
V+,&p-rO as (~*+y~)~-+~(y+O,x>O). 

We take advantage of the fact that Gr >:, 1 and develop 
complementary asymptotic solutions in an outer and an 
inner, or boundary layer, region insisting that the solutions 
“match” at each stage. Anti~pating the form of these we 
write all variables in the outer region 

f= Gr-Sf,+Gr-%+.... (3) 

where fi =A(x, y) and (3) is supposed valid in the limit 
Gr + co, x, y = O(1). For the inner, or boundary layer, 
region we write 

$ = Gr-*(Y, + Gr-*Y, + ...), 
8= @,+Gr-*O,+,.,, 

i p = Gr-*P,+.... 
(4) 

The expansions in (4) are valid for Gr -+ io with X, 
Y(=Gr* 

Y 
), ({a/2) -#) = O(1). We note that when, in this 

limit, Gr ({n/Z) - 4) = O(i) adifferent scaling of the variables 
is required. This case of an almost horizontal flat plate has 

been discussed by Jones [3]. With the terms O(l) in (3) 
zero the flow is initiated in the boundary layer, by buoyancy 
forces acting upon the fluid, as we expect intuitively. If we 
write 

then 

fl(0)=f;(O)=O, g1(0)=1; s;.g1+0 as v-+m. J 
Numerical solutions of (6) are discussed in standard 
references. We note in particular that for (F = 1, 
fi(cn) = 1.4792. We turn next to the terms O(Gr-‘) in the 
outer solution (3). It can be shown that &, p2 z 0 but the 
matching requirement shows tjis P 0. The outer flow is, to 
this order, irrotational so that & satisfies 

I. The second-order velocity functions fj+ (n), 0 
# = 60”. 

FOG. 2. The streamtine pattern # = const. in the 
outer region as calculated from (3) (8) and (13) 
with o = 1, Gr = lo4 and rt, arbitrary. ---- one 

term of (3) - two terms of (3). 
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The solution of (7) has been given by Clarke [23 as 

which may be compared with [l], equation (24). Kierkus 
in fact, in his outer solution, attempts to model the effects 
of a finite plate whilst retaining the solution for a semi- 
infinite plate in the inner region. His first-order inner and 
outer solutions are therefore incompatible. The finite-plate 
problem remains unsolved. 

Retuning now to the next term of the inner solution we 
consider (1 bf for the pressure distribution. With Pz = z&r,&) 
we have for the upper surface 

h;=g,tan& hl-+O as q-+w, (9) 

This has been given by Kierkus as the leading term of a 
series associated with the second-order boundary-layer 
solution. However we note that the remaining terms in his 
series are meaningless within the context of the in- 
compatibility of his first-order solutions. As Kierkus notes, 
the pressure distr~bufion in the boundary layer which forms 
on the lower surface is obtained from (9) by simply changing 
the sign of a). As for the symmetrical case 4 = 0 (see [2]) 
it can be shown that 0s zz 0. The second-order velocity 
field Y, within the boundary layer adjusts the “slip” velocity 
a$2/&lF=o = $~-“fi(co), (X > 0) to zero at the plate; its 
structure is significantly influenced bv the self induced 
pressure field -calculated from (9). Thus if we write 
Uy, =fz&) where i refer to the upper and lower sides of 
the plate respectively, then from (la) 

f;‘; +$f*JY* --if;&* T(h,-nh;) = 0, 

fs*(O) =fXO) = 0, t f;*(m) = al;(o+ 
00) 

This solution has also been given by Kierkus, as the leading 
term of an otherwise meaningless series. We show in Fig. 1 
the velocity functions fi&) for Q = 1, Cp = 60”. The 
asymmetry in the boundary-layer flow brought about by the 
favourable/~verse pressure gradients on the upper/lower 
surfaces is clearly demonstrated. To calculate the next term in 

the outer series (3) we require a matching condition which is 
derived from the ~ymptotic form of the ~iution of (10) 
as TV-) m. Thusf,* * $~,(co)q+cz* as v -+ co where, for 
(r = 1, d, = 60”. c,c = 6.7845. c, _ = - 11~2985. Before 
proceeding we ma& the fol~o~ng~im~~~t observation, 
namely that fi = #& + +$a _) is the solution in the absence 
of any self-induced pressure field, i.e. d, = 0 as in [2]. Thus 
if& _ %f~(co)tl+ c~ then 

c2 = f@*+ +cz-1. flu 

If we now consider the term O(Gr-*) in (3), it can again 
bc es~bI~~ed that the solution is isothermal and 
irrotational, so that the problem for $s is 

V2&=0, J&- fc,*, y=o+, x>o. (12) 

The solution of (12) for I& is 

1 
$3 = cz+ -Z;;(C2++CZ_)tan- ’ Y 

(> x ’ (13) 

from which the purely symmetrical solution is obtained by 
setting c2 * = c2. However since the stream~nes in the outer 
flow are given by Ji = const. we see from (8), (11) and (13) 
that to an observer outside the boundary layer the 
symmetrical streamline pattern associated with the case 
Cp = 0 is preserved. Only the ‘label’ associated with each 
streamline is changed by the constant amount &cs + - ca -). 
Streamlines calculated from (8), the leading term in (3), are 
shown in [2]. In Fig. 2 we show the effect upon the 
streamline pattern of inclu~ng the second term (131, for a 
particular value of Cr. 

We note finally that since ez = 0 the heat transfer from 
the plate is the same as that for a vertical plate up to, 
but not including, terms of relative order Gr-*. 
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NOMENCLATURE 

specific heat at constant pressure; 
normalized stream function ; 
gravity ; 
local heat~tr~~er coefficient ; 
thermal conductivity ; 
molecular weight ; 
local Nusseit number ; 
Prandtl number ; 
Schmidt number; 
temperature; 
x and y components of velocity; 
mass fraction; 
parallel and normal direction to the wall. 

Greek symbols 

A, latent heat; 
A density; 
s T1 coefticient of expansion; 
P. viscosity; 

$, 
dimensionless temperature; 
dimensionless concentration; 

t ratio of the product of density and viscosity; 
‘I, similarity variable. 

Subscripts and superscripts 
condensable vapor; 

:: noncondensable gas; 
L Iiquid; _. 
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y, 
f, 
a, 

vapor; 
interface; 
bulk; 


